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A: Assembly of the dengue database 

A.1: Overview 

The dengue database comprises occurrence data linked to point or polygon locations, derived 

from (i) the peer-reviewed literature and case reports and (ii) HealthMap data
1
. Both data 

sources are described in full here. To collate the peer-reviewed database, literature searches 

were undertaken using major search engines and the resulting articles were manually 

reviewed. For the HealthMap data, online informal data sources were monitored, including 

online news aggregators, eyewitness reports, expert-curated discussions and validated official 

reports. All entries from both data sources were manually checked by the authors and then 

underwent a series of quality-control procedures described below to ensure correct geo-

positioning. In total, 8,309 geo-positioned data points were incorporated into the modelling 

work described in this paper. 

 

A.2: Peer-reviewed literature search 

A2.1: Data collection 

PubMed (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) 1920 to 2009 was searched using 

the term “dengue”. The MESH term technology used in the PubMed citation archive ensured 

all pseudonyms were automatically included 

(http://www.nlm.nih.gov/mesh/2008/MBrowser.html) in the searches. The same process was 

repeated for ISI Web of Science (http://wok.mimas.ac.uk) and PROMED 

(http://www.promedmail.org). The searches were last updated on 8
th

 February 2012. No 

language restrictions were placed on these searches; however, only those citations with a full 

title and abstract were retrieved. This resulted in a collection of 5,876 references, of which 

2,883 unique articles were identified as potentially containing useable location data. The full 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
http://www.nlm.nih.gov/mesh/2008/MBrowser.html
http://wok.mimas.ac.uk/
http://www.promedmail.org/
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texts were obtained for 2,838 of these (98.4%) and the information from 1,655 articles was 

ultimately included in our database. The references are listed in the Supplementary 

Information of Brady et al 2012
2
. 

 

In-house language skills allowed processing of all English, French, Portuguese and Spanish 

articles. We were unable to extract information from a small number of Turkish, Polish, 

Hebrew, Italian, German and Chinese articles. 

 

Clinical or laboratory confirmation of dengue virus transmission found within these articles 

was recorded as a dengue occurrence data point. Reports of autochthonous (locally 

transmitted) cases or outbreaks were entered as an occurrence within the country in which 

transmission occurred. If imported cases were reported with information on the site of 

contagion, they were geo-positioned to the country of contagion. If imported cases were 

reported with no information about the site of contagion, they were not entered into the 

database. If an imported case led to an outbreak (i.e. local transmission) within the recipient 

country and location information was available for the site of initial contagion and the site of 

the outbreak, this was recorded as two occurrences: one in the country of contagion and one 

in the country where the outbreak occurred.  

 

A.2.2: Assigning geo-positions to data from the peer-reviewed literature 

All available location information was extracted from each peer-reviewed article and 

PROMED case report. The site name was used together with all contextual information 

provided about the site position to determine its latitudinal and longitudinal coordinates using 

Google Maps (https://www.maps.google.co.uk/). Place names are often duplicated within a 

country, so the contextual information was used to ensure the right site was selected. When 
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the site name was not found, the contextual information was used to scan sites in the 

approximate area to check for names that had been transliterated in Google Maps in a 

different way to the published article (e.g. Imichli and Imishly).  

 

If the study site could be geo-positioned to a specific place, it was recorded as a point 

location. If the study site could only be identified at an administrative area level (e.g. 

province or district, etc.), it was recorded as a polygon along with an identifier of its 

administrative unit. All formal occurrence records underwent temporal standardisation (see 

A.5) to ensure consistent occurrence point definitions before undergoing the quality-control 

process (A.4). 

 

A.3: Collation of online informal data sources 

A3.1: Data collection 

Informal online data sources were collated automatically by the web-based system 

HealthMap as described elsewhere
1
. Briefly, HealthMap is an online infectious disease 

outbreak-monitoring system that captures data from a range of electronic sources in nine 

different languages. The system performs hourly scans of online news aggregators, listservs, 

electronic disease surveillance networks and public health outbreak report feeds. It captures 

four fields: headline (the headline, title or subject line), date (publication date), description (a 

brief summary), and info text (the main content of the article or report). The info text is 

passed to HealthMap’s classification engine, which parses out one or more disease names and 

outbreak locations using dictionaries of disease and location patterns. The system then uses a 

separate algorithm to assign relevance scores that classify alerts as (i) breaking (information 

about a new outbreak or new information about an on-going outbreak), (ii) context (content 

about research, policy or background on a particular disease), (iii) warning (articles that warn 
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about the potential for an outbreak), (iv) not disease-related (articles that are captured by the 

system because they contain words that match disease names in the dictionary but are not in 

fact about an infectious disease) or (v) old news (an article that mentions a historical 

outbreak). Finally, HealthMap handles duplicates by aggregating together highly similar 

alerts such as those released by a news wire service and published in multiple periodicals. 

The requirements for including a dengue occurrence record from the HealthMap data set in 

our database were that the article or report contained the keywords “dengue”, “dengue fever”, 

“dengu” or “dhf” and was classified by the system as “breaking”.  

 

This HealthMap data set was last updated on 26
th

 May 2012, and then manually checked for 

imported cases and cross-validated against dengue transmission extent based upon evidence 

consensus
2
. In total, the HealthMap data provided 1,622 new dengue occurrence data points 

in addition to those previously extracted as described in A2.2. 

 

A.3.2: Assigning geo-positions to data from online informal data sources 

Geo-positions for the HealthMap data were generated using a custom-built gazetteer, or 

geographic dictionary, of over 4,000 relevant phrases and place names and their 

corresponding geographic coordinates. The system uses a look-up tree algorithm that 

searches for matches between sequences of words in alert info text and sequences of words in 

the gazetteer. When a match is found, a set of rules are applied which attempt to determine 

the relevance of the place name to the outbreak that is being reported based on the position of 

the phrase in the report text. The gazetteer includes place names at a range of spatial 

resolutions (e.g. neighbourhoods, cities, provinces and countries) and uses certain phrases to 

trigger exclusion of a place name (e.g. Brazil nut). As with the formal occurrence records, all 
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informal occurrence records underwent temporal standardisation (A.5) and quality control 

(A.4). 

 

A.4: Automatic validation and quality control 

Geo-positioned data from both sources were entered into a bespoke PostgreSQL database that 

links disease data to spatial data in order to cross-check and validate data points. First, a 

raster distinguishing land from water was created at a 5km x 5km resolution and was used to 

ensure all disease occurrence points were positioned on a valid land pixel such that they 

could be used along with other covariate layers in our analysis (see Supplementary 

Information B). Any data that met the following criteria were excluded from the database: 

1. Points found in countries or administrative divisions classified as unlikely to have a 

dengue occurrence based upon evidence consensus
2
. This classification was 

determined according to a qualitative evidence base that assessed consensus among a 

wide variety of evidence types on dengue presence or absence at a national and 

sometimes sub-national level
2
. This consensus ranged from complete agreement on 

absence (score of -100) to complete agreement on presence (100). We chose to 

exclude points in areas with scores of less than -25. This conservative criterion was 

intended to preserve points in areas of both proven dengue presence and uncertainty 

on dengue status.  

2. Administrative division polygons having an area greater than 111km
2
 (one decimal 

degree at the equator). 
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A.5 Temporal standardisation 

The collected dengue occurrence data came in a variety of temporal forms. Some sources 

reported multiple cases in a single location throughout a year with no finer-scale temporal 

information. However, in other sources (particularly online sources), multiple cases in the 

same location throughout the year were presented as a new report each time subsequent 

transmission occurred. As a result we chose to define a single occurrence at a given unique 

location as one or more confirmed cases of dengue occurring within one calendar year (the 

finest temporal resolution available across all records).  Our annual temporal standardization 

involved disaggregating occurrence points in the same location spanning multiple years into 

individual occurrences for each respective year, and aggregating occurrence points in the 

same location within the same year to form a single occurrence point attributed to that year. 

Occurrence points were considered overlapping if they lay on the same 5km x 5km pixel, or 

if they occupied the same lower administrative level unit for occurrence polygons. It should 

be noted that multiple different temporal definitions of an occurrence point were tested, such 

as no temporal standadisation or total temporal standardization where occurrence points mark 

where dengue has ever occurred. These variations were found to have a negligible impact on 

the resulting predictive maps and results.  

 

A.6 Data summary 

Once these procedures were complete, the final database used in subsequent modelling 

contained 8,309 occurrence observations (including 5,216 point locations and 3,093 small 

polygon centroids) covering a period from 1960 to 2012. Of these 8,309 occurrences, 7,050 

were from the literature and case report database and 1,259 were from HealthMap. The 

number of occurrence points at each stage of quality control processing is summarised in 

figure SA1 below.  
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Figure SA1. Occurrence data processing summary. Text in red show the raw occurrence 

inputs, text in blue show the occurrence data lost through the stages of quality control and the 

text in green is the final dataset used in subsequent modelling.  

 

Maps displaying the 8,309 locations are provided in Figures SA2-SA6 (polygon locations are 

represented by their centroids), the numbers of occurrence locations per year are shown in 

Figure SA7 and the temporal break-down by country and region are shown in Figures SA8-

SA11.  

 

The majority of occurrence records were sampled from the Americas (4215 - 50.7%) and 

Asia (3345 – 40.3%), with Africa (285 – 3.4%) and Oceania (464 – 5.6%) having fewer 

samples. The vast majority (86.5%) of the data is contemporary and sampled after 1990 
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(Figure SA7), but the temporal sampling density varies greatly by country (Figures SA8-

SA11).  
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Figure SA2.Geographic locations of occurrence data globally. Country colouring is based on evidence-based consensus
2
 with green 

representing a consensus on dengue absence and red a consensus on dengue presence.
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Figure SA3.Geographic locations of occurrence data in Africa and the Arabia 

Peninsula. Country colouring as per Figure SA2. 
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Figure SA4.Geographic locations of occurrence data in Asia. Country colouring as per 

Figure SA2. 
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Figure SA5.Geographic locations of occurrence data in the Americas. Country colouring 

as per Figure SA2. 
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Figure SA6.Geographic locations of occurrence data in Australia and the Pacific. 

Country colouring as per Figure SA2. 
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Figure SA7. Number of occurrence points per year globally. Bars are subdivided by 

continents Africa (red), Americas (green), Asia (blue) and Oceania (purple). 
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Figure SA8. Temporal breakdown of the number of occurrences per county in the Americas. Data point colour and size reflect the total 

number of occurrences at each time point. 
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Figure SA9. Temporal breakdown of the number of occurrences per county in Africa. Data point colour and size reflect the total number of 

occurrences at each time point. 



 21 

 
Figure SA10. Temporal breakdown of the number of occurrences per county in Asia. Data point colour and size reflect the total number of 

occurrences at each time point. 
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Figure SA11. Temporal breakdown of the number of occurrences per county in Oceania. Data point colour and size reflect the total 

number of occurrences at each time point. 
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B: Explanatory covariates 

B.1: Overview 

Dengue viruses are established in two habitats: the urban setting where humans and 

mosquitoes are the only known hosts, and forested areas where mosquito-borne viruses occur 

in nonhuman primates in a sylvatic cycle, with rare transmission from primates to humans
3-5

. 

Central to the global emergence of dengue virus has been the spread of its mosquito vectors. 

The primary vector of dengue virus is the highly domesticated, urban-adapted Aedes aegypti, 

found across tropical and subtropical latitudes
6
; however, other secondary vectors including 

Aedes albopictus, Aedes polynesiensis, and Aedes scutellaris can also transmit the virus. A 

complex interaction of factors influences the vector efficacy in virus transmission, with 

environmental factors such as precipitation, humidity, and temperature having been most-

often incorporated into past efforts to model the distribution of dengue transmission
5-12

. 

However, multiple studies have emphasised the importance of socioeconomic factors in 

dengue transmission dynamics
10,13-15

, such as the movement of mosquito vectors and viremic 

people
16

, urban poverty and overcrowding, and poor public health infrastructure
3
. These 

factors have not yet been directly incorporated into global dengue distribution modelling until 

now. 

 

For our model of the probability of occurrence of dengue virus, we used a suite of eight 

predictor variables. These covariates were chosen to reflect factors known or hypothesised to 

be ecologically relevant to dengue virus transmission dynamics, and for which it was feasible 

to collect data or derive proximate measures. The resulting set of covariates included (i) two 

precipitation variables interpolated from global meteorological stations, (ii) an index of 

temperature suitability for dengue transmission, (iii) a vegetation/moisture index, (iv) two 
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classes of urbanization, (v) an urban accessibility metric, and (vi) an indicator of relative 

poverty. All grids were standardised to ensure uniformity of land/water boundaries (as 

described in A1.5) and the same spatial resolution (5km x 5km). In this document, B.2 

outlines our hypotheses underlying the choice of covariates, B.3 provides a detailed 

description of the sources for these covariates as well as how they were processed, B.4 

describes the raster standardization process and B.5 and B.6 address statistical considerations. 

 

B.2: Covariate selection 

B.2.1: Climatic and environmental covariates 

Precipitation: 

Presence of static surface water in natural or man-made containers is a pre-requisite for Aedes 

oviposition and larval and pupal development. Despite Aedes aegypti’s principle larval 

habitats being man-made water storage containers
17

, fine-scale temporal relationships 

between precipitation, vector abundance, and dengue incidence have been established in 

many locations
18-20

. These relationships are not universal, with dengue occurring in dry 

periods in some locations
21

 and exhibiting varying patterns where two rainy seasons exist
22

. 

In general, however, there is evidence that areas with greater amounts of precipitation are 

associated with higher dengue infection risk
23,24

.  

 

Temperature suitability index: 

As small-bodied ectotherms, Aedes mosquitoes’ distribution, life cycle duration, survival, and 

behaviour are all dependent upon temperature
25,26

. Similarly, the extrinsic incubation period 

(EIP) of the dengue virus in the mosquito decreases at temperatures between 30 and 35
o
C

27,28
. 

In combination, these relationships determine the occurrence of dengue in Aedes at 

temperatures above 18-20
o
C

27,29
. A direct association has also been found between higher 
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temperatures and dengue incidence in humans
29-31

. Rather than simply including raw 

temperature values in our models, we incorporate these two principal temperature-dependent 

mechanisms (mosquito survival and virus incubation) in order to formulate a more 

biologically relevant covariate.  An index of dengue-specific temperature suitability was thus 

created using a biological model, with temperature data as an input, to calculate the number 

of days per year that a given location on our global grid is suitable for dengue transmission
32-

34
. This index is explained in greater detail in B.3.2. 

 

Normalized difference vegetation index: 

There is often a close association between local moisture supply, vegetation canopy 

development and abundance of breeding mosquitos 
35

, with previous studies highlighting the 

importance of moisture-related measures such as relative humidity to dengue occurrence
7
. 

Although resistant to desiccation, both Aedes eggs and adults require moisture to survive
36-40

, 

with low dry season moisture levels substantially affecting Aedes mortality
40-42

. Vegetation 

canopy cover has previously been associated with higher Aedes larvae density
43-46

 by 

reducing evaporation from containers, decreasing sub-canopy wind speed and protecting 

outdoor habitats from direct sunlight. To account for these factors, we used the normalized 

difference vegetation index (NDVI) as a potential indicator of the overall moisture 

availability and vegetation canopy cover at a given location. 

 

B.2.2: Socio-economic covariates 

Relative poverty indicator: 

Several studies have linked poverty to dengue
47-50

. Typically, in both rural and urban settings, 

poorer areas are characterised by several factors that may favour higher dengue transmission. 

In many cases, relative poverty can be more indicative of economic disadvantage than 
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absolute poverty, as those living below a median or mean income threshold cannot derive the 

benefits of a sufficient material standard of living in relation to their circumstances. These 

standards comprise factors such as sustained vector control, access to principal health care 

services, manageable household sizes, basic sanitation, and reliable water supply. Lacking in 

any one of these standards may contribute to higher dengue transmission, and thus areas of 

greater relative poverty were hypothesised to exhibit a higher occurrence of dengue
51,52

. To 

account for relative poverty, we chose the finest geographic-scale data available for economic 

productivity and adjusted for purchasing power parity to reflect per-pixel relative poverty
53

. 

 

Urban accessibility:  

At national and international spatial scales, individual human movements drive dengue virus 

introduction and reintroduction
54,55

. Indeed, the global spread of dengue virus in the past sixty 

years occurred through shipping routes and was characterised by periodic, large, spatial 

displacements
56

. Globalisation has further aided viral transmission by increasing the speed 

and frequency with which climatically suitable locations for dengue are connected 
57,58

. 

Spread of dengue into new locations requires establishment of a competent local vector 

population, as the dispersal capabilities of individual mosquitoes are limited
59

. Conversely, 

movement of viremic humans occurs frequently, between a multitude of locations and at 

varying spatial scales. Therefore, human movement is the key facilitator of the spread of 

dengue virus at larger spatial scales
55

, particularity in highly accessible, interconnected areas 

towards which people tend to gravitate. To simultaneously account for accessibility, patterns 

of human movement, and urban gravitation, we use the time required to travel from a given 

geographic location to a large city (minimum population 50,000) via land or water-based 

transportation networks
60,61

. 
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Urbanisation: 

While dengue transmission has been documented in both rural and urban settings 
62

, urban 

environments are characterised by many factors that are favourable for dengue transmission. 

These typically include population growth, a high abundance of vector breeding sites 

resulting from poor hygiene, inadequate housing quality, and minimal environmental 

management practices. Consequently, a high proportion of people in urban environments are 

brought into contact with the Aedes vector, resulting in a disproportionate degree of new and 

sustained dengue transmission compared to rural localities
63,64

. Peri-urban environments also 

constitute a large proportion of the area where dengue is found in tropical and sub-tropical 

regions. Unplanned settlement, overcrowding, and routine household water storage behaviour 

in these settings all combine to produce higher likelihood of vector abundance and viral 

transmission
65-67

. We created a categorical variable to differentiate between urban, peri-

urban, or rural areas by supplementing the 2010 Global Rural Urban Mapping Project 

(GRUMP) urban and rural categories with land-cover classes to further distinguish peri-urban 

extents
68

. 

 

B.3: Covariate sources 

B.3.1: WorldClim database - precipitation 

The WorldClim database (www.wordclim.org) consists of a freely available set of global 

climate data at a 1km × 1km spatial resolution which was compiled using weather data 

collected from world-wide weather stations
69

. The data spans the period 1950-2000 and 

describes monthly averages of precipitation during this period. From these data, interpolated 

global climate surfaces were produced using ANUSPLIN-SPLINA software
70

. The result is a 

composite data set encompassing multiple time intervals, from which we extracted 

information about seasonal and inter-annual variation in precipitation patterns for each 

http://www.wordclim.org/
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gridded cell of our interpolated surfaces with temporal Fourier analysis (TFA) to generate the 

minimum and maximum monthly precipitation averages for the entire time series
71,72

. 

 

Figure SB1. WorldClim TFA maximum (a) and minimum (b) precipitation averages 

(mm). 

 

B.3.2: Temperature Suitability  

We developed a biological model for suitability of dengue virus transmission across intra-

annual temperature cycles. This measure of days of suitable transmission was calculated for 

every 1km x 1 km pixel globally in an approach similar to that devised for applications in 

malaria research
34

. This dynamic model incorporates the effects of continuously changing 

temperature regimes on vector and virus survival. Temperature suitability, then, is an index Z 

which is proportional to vectorial capacity V, or the daily rate at which future infectious bites 
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will arise from one infective case. V depends on two principal temperature-dependent 

mechanisms of the dengue transmission cycle: (i) the life span of the Aedes vector and (ii) the 

duration of the extrinsic incubation period (EIP) of the dengue virus
32,33

. The quantitative 

relationships entered into our models were defined following the findings of Focks et al. 

(1993), with a constraint placed on EIP such that it may never exceed the maximum vector 

lifespan. Using WorldClim temperature data for 1950-2000 which was TFA-processed in the 

same manner as the precipitation data (S2.3.1), daily temperature estimates and a sinusoidal 

diurnal cycle for all 365 calendar days were interpolated from the synoptic monthly values 

(minimum, maximum, mean) for each pixel using a cubic spline as in Gething et al. 2011
73,74

. 

We then computed Z for all days within every pixel; all values of Z greater than 0 indicated 

suitability for dengue transmission. The total number of days Z was greater than 0 was 

summed for every pixel throughout one year (ranging from 0 to 365). This was then rescaled 

from 0 to 1 to create the final temperature suitability index included in our dengue occurrence 

distribution models. Pixels where Z=0 were considered permanently unable to support 

dengue transmission and were consequently designated as having a zero probability of 

occurrence in our final risk maps. 
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Figure SB2. Temperature suitability index. Created from a biological model for the 

suitability (zero to one with one as most suitable) of annual temperature patterns for dengue 

transmission. 

 

B.3.3: Advanced Very High Resolution Radiometer - NDVI 

The Advanced Very High Resolution Radiometer (AVHRR) 8km × 8km products are 

available over a 20-year time series, and a limited series of 1km × 1km resolution data are 

available for April to December 1992; January to September 1993; February to December 

1995 and January to April 1996.  We used the AVHRR NDVI product which numerically 

specified the level of green, photosynthesizing, and therefore active, vegetation derived from 

the spectral reflectance of AVHRR channels 1 and 2 (visible red and near infrared 

wavelength, respectively)
75,76

. From a composite data set encompassing multiple time 

intervals, we extracted information about average temporal variation in NDVI patterns for 

each gridded cell of our interpolated surfaces by TFA.   

 

Figure SB3. AVHRR TFA mean normalised difference vegetation index. 
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B.3.4: Global Rural Urban Mapping Project 

The Global Rural Urban Mapping Project Urban Extents (GRUMP-UE) surface is created 

principally using night-time lights satellite imagery, supplemented with data derived from 

tactical pilotage charts and known settlement points
68,77,78

. Through using satellite night-time 

lights as the basis for mapping urban areas, GRUMP-UE has been shown to overestimate 

urban extents due to the “overglow” effects seen in such imagery
79

, resulting in the inclusion 

of less intensely urban, or “peri-urban,” areas. Previous work has shown that areas where 

population density is greater than or equal to 1000 people per km
2 

are indicative of intense 

urbanization, thus providing a suitable threshold for distinguishing urban from peri-urban 

areas
80-83

. This was implemented using the Gridded Population of the World version 3 

(GPW3)
68

 population density database projected for 2010
80

. This database is derived from the 

most recently available national censuses and other demographic data, resolved at the highest 

possible administrative boundary level, and area-weighted
83

 to a 5km × 5km spatial 

resolution grid. The final result was two variables for our distribution modelling, the first 

which identified a pixel as urban or otherwise, and the second which identified a pixel as 

peri-urban or otherwise. 

 

Figure SB4. GRUMP urban and peri-urban categorical classification.  
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B.3.5: Urban Accessibility 

The urban accessibility data set was obtained from the European Commission Joint Research 

Centre Global Environment Monitoring Unit (JRC)
61

.This 1km × 1km-resolution database 

defines the travel time to a city of 50,000 people or more in the year 2000 using land- or 

navigable water- based transportation methods. This is computed using a friction-of-distance 

algorithm which computes the ‘cost’ in time of travelling between two locations on a regular 

raster grid
60,61

. It is derived from several spatial data sets representing roads, terrain, shipping 

lanes, land cover, political boundaries, and any other geographic features that should be 

considered when estimating the travel time to target locations. Consequently, the target 

locations were cities with a population of 50,000 people or more in the year 2000 based upon 

the Global Rural Urban Mapping Project (GRUMPv1) human settlements database
84

.  

 

Figure SB5. JRC urban accessibility. Defines the travel time to nearest city with a 

population of 50,000 or more by land or water based transportation. 

 

B.3.6: Relative Poverty 

Most global measures of economic activity are time series measured at the national level, 

providing a very limited number of observations at enormously different geographic scales. 

The G-Econ database (http://www. gecon.yale.edu ), however, takes economic estimates 
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from the lowest possible administrative subdivision for which data are available and then 

spatially rescales
85

 these data to provide a global grid of economic activity at a 111km x 

111km (1 degree at the equator) resolution. A detailed explanation of the spatial rescaling 

methodology can be found in Nordhaus et al. (2006; 2008). One or more of four major 

sources of economic data for each administrative unit are utilised in order to create the 

database: (i) gross regional product (ii) regional income by industry (iii) regional employment 

by industry and (iv) regional urban and rural population or employment along with 

aggregated sector data on agricultural and non-agricultural incomes
85

.  

 

The result is a measure of gross cell product (GCP) for each 1 degree x 1 degree cell globally, 

with the same conceptual basis as gross domestic product (GDP), referring to the total market 

value of all final goods and services produced within one year, and is generally thought of as 

an indicator of the overall standard of living in a given area. In some cases, the original G-

Econ database contained multiple entries for a single cell. When this was the case, we chose 

the value derived from the best-quality information (indicated by a “quality” field) and/or that 

which was most recently entered into the database. We then adjusted the GCP measures for 

purchasing power parity (PPP) in U.S. dollars for the years 1990,1995,2000, and 2005, using 

national aggregates estimated by the World Bank
86

 and computed the mean across all years 

for each gridded cell globally. This PPP-adjusted measure of GCP served as the indicator of 

relative poverty used as a covariate in our model. 
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Figure SB6. G-Econ gross cell product in U.S. dollars. Values averaged over years 1990, 

1995, 2000 and 2005 and adjusted for purchasing power parity. 

 

B.4: Raster Standardisation 

As detailed in this document, the original data sources for our covariates came in a variety of 

formats, with varying spatial resolutions. Additionally, the land-water boundaries inevitably 

differed slightly between data sets obtained from different sources, such that the precise 

definition of coastlines and the inclusion or exclusion of small islands and peninsulas was not 

consistent. These factors precluded immediate use of these data in a single spatial model. To 

overcome these incompatibilities and generate a fully standardised suite of input grids, we 

derived a standard geographic template around which all grids were processed. This template 

was implemented as follows: (i) input data sources were re-projected, where necessary, using 

a standardised equirectangular Plate Carrée projection under the World Geodetic System 

1984 coordinate system; (ii) where input grids were defined at spatial resolutions other than 

5km x 5 km, they were aggregated or disaggregated to this resolution using bilinear 

interpolation; (iii) grids were either extended or clipped to match a standardised extent 

spanning -180° east to 180° west, and from 85° north to 60° south; (iv) alignment to a 

standardised land-water boundary raster mask (see A.5) was performed using nearest 
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neighbor interpolation, ensuring a consistent coastline definition. 

 

B.5 Covariate Extraction 

Extraction of covariate values from occurrence degree coordinates was performed differently 

for occurrence points and polygons. For a given coordinate, points were assigned the 

covariate value of the pixel at that location. For polygon occurrences, covariate values were 

averaged across the all pixels contained in the polygon. 

 

B.6: Multicollinearity 

Multicollinearity occurs when two or more predictor variables in a statistical model are 

linearly related. Multicollinearity can lead to unstable parameter estimates and inflated 

standard errors on estimates
87

. As a rule of thumb, multicollinearity results in variance 

inflation when covariate variables have correlation coefficients
87

 of Pairwise 

correlation coefficients for all our covariate variables are well within this commonly used 

threshold and therefore multicollinearity is unlikely to affect our analysis (Table T1). 

Table T1. Pairwise correlation matrix between covariate variables. Symmetric matrix with 

diagonal elements having a correlation of 1.TS (temperature suitability), RP (relative poverty), 

UA (urban accessibility), U (urban), PU (peri-urban), Pmin (precipitation minimum), Pmax 

(precipitation max), NDVI (normalized difference vegetation index). 
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0.048 

-0.018 

-0.463 

 

 

 

 

0.002 

0.098 

0.143 

-0.031 

0.044 

 

 

 

0.268 

-0.056 

0.026 

0.063 

-0.115 

0.194 

 

 

-0.226 

-0.035 

-0.031 

-0.500 

0.186 

0.201 

0.069 
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C: Predicting probability of dengue transmission using Boosted 

Regression Trees  

C.1: Overview 

Knowledge about the geographical distribution of diseases is central to the planning, 

implementation, and monitoring of control programmes, and also underpins approaches to 

future risk prediction and mitC.3igation. However, in most cases, detailed data on disease 

distributions are not available and collecting such data is costly and labour-intensive
88

. 

Consequently, there has been an increased interest in developing predictive modelling 

approaches to estimate disease distribution patterns when dealing with incomplete data
89

. 

Such approaches vary according to the nature of available data (i.e., whether it relates to 

disease prevalence, incidence, or occurrence) and the locational specificity of the available 

data (i.e., whether precise point locations or administrative regions). Particularly extensive 

population-representative surveillance data on prevalence or incidence are rare for infectious 

diseases, especially those which are more neglected from a public health perspective. More 

commonly, the only data available for mapping these diseases are observations of their 

occurrence in different locations, without corresponding information about where they are 

known to be absent or less prevalent. Generating disease maps from occurrence point data is 

thus similar to estimating species distributions, which characterise habitats suitable for a 

given species (niche modelling)
90,91

 based on geo-referenced collection locations. In the 

context of disease mapping, the aim is to determine habitat suitability for the persistence of a 

given disease agent and its transmission vectors at sufficient levels to result in human cases. 

This suitability may be determined based upon the climatic, ecological, and socioeconomic 

characteristics of those locations where the disease has been reported.  



 37 

 

Nearly all species distribution models (SDMs) comprise a decision boundary in a 

multidimensional space in which each dimension represents a different environmental 

variable (for example average temperature, rainfall patterns, degree of urbanization, etc.). The 

modelling objective is to characterise the subset of this environmental space where the 

species or disease occurs, which then allows the suitability of all other locations across a map 

to be assessed. This results in estimates of the probability of the species or disease occurring 

in these other locations. Whilst a diverse array of models has been developed, they generally 

differ only in the way this multidimensional characterisation or ‘response’ is achieved. Two 

broad classes of SDMs can be distinguished: profile and classification models. 

 

Profile approaches require only presence data to determine habitat suitability. The 

BIOCLIM
92

 model is a popular example that captures the environmental niche, or ‘profile,’ 

of a species by creating a rectangular envelope in the multidimensional space, defining the 

limits of the species’ spatial range based upon the most extreme (minimum and maximum) 

values of each environmental variable in the locations where it has been observed. Whilst the 

reliance only on presence data only is advantageous, these envelopes are simplistic in that 

they cannot differentiate between varying densities of occurrence records within the defined 

limits and accordingly do not allow for a probabilistic representation of the predicted species 

or disease distribution. 

 

Classification techniques are derived from statistical and machine learning algorithms and 

have been shown to have a greater predictive capacity than the simpler profile methods
93-97

. 

One well-known example of a classification approach is the generalised linear model 

(GLM)
98

, which represents multivariate space using linear parametric terms, such as a 
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combination of quadratic or cubic equations. More elaborate regression techniques have been 

developed to overcome the limited flexibility of parametric forms and allow the modelling of 

complex ecological response shapes
99

. These include fitting non-linear functions either 

additively (e.g. generalised additive models, GAMs
100

) or piecewise (e.g. multiple additive 

regression splines, MARS
101

), or by recursively partitioning the environmental space into a 

large number of subsets within which separate regression models are fitted and then 

recombined to give a complex final response (regression trees
102

). Maxent
103

 is a popular 

machine learning approach that estimates disease distributions by finding the distribution of 

maximum entropy
104,105

: the simplest possible distribution that is consistent with the mean 

and variance of the observed distribution.  

 

The flexibility of a model to fit complex environmental responses must be weighed against 

the danger of overfitting, where the model is tuned to noise present in the data as well as the 

underlying signal, rendering the model less accurate in prediction. An approach that has 

drawn significant research attention in recent years is boosted regression trees (BRT)
100,106-

108
, which combine the complex fitting capability of a regression tree with boosting, a 

variance reduction technique that consists of iterative improvements to the model obtained by 

importance sampling. Boosting allows fine tuning of the overall model fit whilst reducing the 

variance of predictions
107

. By including a cross-validation procedure at each iterative step 

(whereby model performance is evaluated against a randomly held-out subset), BRTs are also 

adept at avoiding over-fitting
106,108

.  

 

A comprehensive comparison of 16 modelling methods found that machine learning methods 

tend to out-perform the more traditional regression approaches with regards to prediction 

performance; among these Maxent and BRTs were the best
94

. Whilst broadly comparable, 
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BRTs were marginally superior at capturing complex responses and have achieved greater 

specificities in predicting areas of specified absence
109

. We therefore elected to adopt a BRT 

approach in this study. 

 

Like all classification methods, BRTs require input data for both presence and absence of the 

species or disease in question
94,110,111

. This requirement arises from the conceptual objective 

of modelling the environmental characteristics of areas associated with observed presences 

relative to the entire available environment. Information on the available environment is 

provided by a sample of background points (or pseudo-data) from the study region.  

Background points do not define the distribution of disease absence; rather, they provide a 

sample set of conditions in places where the disease has not yet been observed. Consequently 

it is critical that generation of the background pseudo-data is informed by a good 

understanding of the factors shaping the geographic distribution of the presence data
95

. 

Consideration must, therefore, be taken when selecting the amount, location and geographical 

configuration of pseudo-data. 

 

In the following sections we provide both a conceptual and a technical description of our 

BRT model structure and details of its implementation. We then explain our protocol for 

sampling data from a contrast class and describe our ensemble analysis aimed at providing 

robust final output predictions irrespective of the different modelling decisions. 

 

C.2: Boosted Regression Trees 

C.2.1: Regression trees and boosting: a conceptual description 

BRTs combine regression or decision trees with “boosting”. The regression tree component 

builds a set of decision rules on the predictor covariates. These rules are constructed by 



 40 

recursively partitioning the data into successively smaller groups using binary splits. Splits 

for all of the predictors are repeatedly applied to their own output until the best split is 

chosen
108,112

. For regression trees, the best split is that which maximises the homogeneity of 

the two resulting groups with respect to the response variable
113

. The output is a decision tree 

with the branches determined by the splitting rules and a series of terminal nodes (“leaves”) 

that contain the mean response. To reduce variance we used a boosting meta-algorithm. In the 

context of regression trees, boosting is a form of functional gradient descent
113

, which seeks 

to minimise a loss function (in our case the residual deviance) by adding, at each step, a new 

tree that best reduces, or steps down, the gradient of the loss function. Therefore, in the 

combined BRT procedure, a regression tree is first fitted to minimise loss. Then boosting is 

performed in a forward stagewise manner to further minimise residual variation in the 

response. The final model is a linear combination of many trees that can be thought of as an 

additive model in which each term is a tree
113

. Forward stagewise fitting also makes it easy to 

use cross-validation to optimise the number of trees and prevent over-fitting. Formal 

mathematical descriptions of classification and regression trees can be found here
102

, gradient 

boosting can be found here
107

 and boosted regression trees can be found here
100

 

 

 

C.2.2: BRT parameter selection  

The BRT approach requires the following parameters to be determined or specified: (i) the 

loss function; (ii) the number of tree/iterations in the stagewise additive model (m); (iii) the 

interaction depth K; (iv) the learning rate n  and (v) the stochastic subsampling proportion p . 

For the loss function (i) we chose a binomial loss function:  
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(y, f (x)) = log 1+exp(-2yf (x)( )        (1)
 

 

This function was chosen not only for applicability to binary data but also for 

robustness
106,114

. For parameters 2-5, we follow Elith et al. (2008)
106

 in setting the interaction 

depth K equal to 4, the stochastic subsampling proportion π equal to 0.75, and the learning 

rate v equal to 1% (a slow rate chosen for optimal performance). Determining the optimal 

number of trees is important, as the model can continue to add trees until over-fitting occurs 

and predictive performance is reduced. The optimal number of trees was found with 10 fold 

cross-validation using the methods of Elith et al.(2008)
106

. 

 

C.2.3: Summarising the BRT model 

BRTs produce an ensemble of thousands of regression trees. To visualise these ensembles we 

constructed partial dependence plots and estimated the relative importance of covariates as 

follows
107

.  

 

Partial dependence plots:  

The partial dependence functions
107

 can be used to visualise dependencies between the 

response and the covariates. When plotted, the partial dependence function shows the 

marginal effect of each covariate on the response after averaging the effects of all other 

covariates. For the BRT, this integral can be approximated using the weighted tree traversal 

method
107

 which uses the ensemble of regression trees and calculates the proportion of data 

that fall in the different terminal nodes for each covariate. 

 

Relative importance of predictor variables:  
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The relative importance of predictor variables quantifies the relative contributions of each 

covariate to the BRT model. Relative importance is defined as the number of times a variable 

is selected for splitting, weighted by the squared improvement to the model as a result of each 

split, and averaged over all trees
107

. These contributions are scaled to sum to 100 where a 

higher number indicates a greater effect on the response. 

 

C.2.4: Evaluating the BRT model predictive performance 

To evaluate the BRT model predictive performance we used the following statistics
115,116

: (i) 

Sensitivity: a value between 0 and 1, the proportion of presences correctly identified, (ii) 

Specificity: a value between 0 and 1, the proportion of absences correctly identified, (iii) 

proportion correctly classified (PCC): a value between 0 and 1 giving the proportion of 

presences and absences correctly classified, (iv) Youdens J or the True Skill Statistic 

(TSS)
116,117

: A value between -1 and 1, with 0 indicating no skill, defined as the sum of 

sensitivity and specificity minus one (v) Cohen’s Kappa
118

: A value between -1 and 1 

measuring the proportion of agreement (0 indicating no agreement) of predicted versus 

observed presence and absence samples, calculated from an error matrix that cross references 

the number of observed and the number of predicted pixels categorised as present or 

absent
119

, and (vi) Area under the receiver operator curve
119

 (AUC): The area under a plot of 

the true positive rate vs. false positive rate, reflecting the ability to discriminate between 

presence and absence. An AUC value of 0.5 indicates random discrimination and a value of 1 

indicates perfect discrimination. 

 

To calculate statistics (i-v) it was necessary to translate the BRT logistic regression 

probability into a binary (0/1) classification. A threshold probability was chosen such that the 

model sensitivity equaled model specificity
120

. In other words we find the threshold where the 
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positive observations are as likely to be wrong as negative observations. It should be noted 

here that the choice of loss function could impact the cut off value. 

 

All prediction statistics (i-v) were evaluated on the final optimal BRT model (see S3.2.3) for 

each of the 10 individual cross validation testing folds, and then averaged across all folds.  

 

When evaluating the BRT model prediction statistics we accounted for spatial sorting bias
121

, 

which occurs when the distance between training-presence and testing-presence locations is 

smaller than the distance between training-presence and testing-absence locations
121

. Not 

accounting for spatial sorting bias causes the predictive performance statistics to artifactually 

improve as μ increases and absence sites occur further away from presence sites. To remove 

this bias we use pairwise distance sampling
121,122

 where each testing-presence site was paired 

with the testing-absence site that had the most similar distance to its nearest training-presence 

site. This procedure ensured that the training model predictive performance was evaluated on 

testing data that were free from spatial sorting bias. We note that removing spatial sorting 

bias prediction reduces estimated performance. This reflects more accurate prediction 

metrics, not poorly fitted models. 

 

C.3: Pseudo-data generation 

While there is no consensus on which pseudo-absence generation method best predicts true 

species or disease distributions, four factors are believed to have the greatest effect on the 

predicted distribution and thus cause bias. These are (i) the geographical extent over which 

pseudo-absences are generated
110,111,123

, (ii) the ratio of pseudo-absences to presences
124-128

, 

(iii) pseudo-absence contamination with true but unobserved presences
129,130

, and (iv) 

sampling bias in presence data
95,124,131

. 
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C.3.1: Geographical extent 

Variation in the geographical extents in which pseudo-absences are generated can have a 

large effect on predictions and performance of distribution models. Pseudo-absences drawn 

from a restricted extent can produce spurious models, as their environmental space is too 

similar to that of the presences
110,132

. Conversely, pseudo-absences drawn from too broad an 

extent may result in over-prediction where one or two environmental conditions dominate, 

thereby providing regional discrimination but failing to identify habitat suitability at a finer 

scale
110,132

. Two approaches to address this issue are: (i) selecting random absences from a 

restricted environmental space that has been determined as unfavourable for disease 

transmission (using profile techniques like those previously discussed)
123,126,133

, and (ii) 

restricting random absence points to a maximum distance from any of the presence 

points
110,134-136

. We chose a pseudo-absence generating scheme that partially utilises both of 

these approaches and restrict the generation of absences to a maximum distance (μ) from any 

presence point. Additionally, we generate absences based on national and sub-national 

evidence consensus on dengue presence or absence. Specifically, we use evidence consensus 

percentage values which range from -100 to 100, where -100 is a complete consensus on 

absence, and 100 is a complete consensus on dengue presence
2
. Using these values, pseudo-

absences are generated with a density inversely proportional to the evidence consensus value 

at a given location except at locations with a complete consensus of dengue presence. This 

approach has two advantages to using environmentally restricted space (i.e., estimated with 

profile methods): first, it incorporates independent evidence-based knowledge on the 

distribution of dengue, and second, it avoids bias resulting from estimated transmission 

extents based on insufficiently sampled presence data. 
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C.3.2: Ratio of pseudo-absences to presences 

The number of pseudo-absences has previously been shown to have a great effect on model 

accuracy
110,124,131

. Most previous research on how to distribute pseudo-absences has a 

consensus on using proportionally more pseudo-absences to presences
124,126

, but there is a 

balance between too many and too few pseudo-absences. Inclusion of too few pseudo-

absences leads to poorly defined areas of absence, which in turn leads to over-prediction of 

the disease distribution
131

. Conversely, the inclusion of too many pseudo-absences can lean to 

an under-prediction of the disease distribution
124

. 

 

C.3.3: Contamination bias 

If a disease is known to be rare, then the generated pseudo-absence data will resemble true 

absences and the BRT model will be close to the true model. However, for more widespread 

diseases (such as dengue) there is likely to be a “contamination” bias
137,138

, where some 

pseudo-absence points actually represent true but unobserved presences
129

. In other words, in 

regions where there is only a weak consensus on dengue absence, we may expect to observe 

presences, but currently do not have evidence for, due to the difficulties associated with 

surveillance of a low prevalence disease. Not accounting for this bias leads to under-

prediction in locations with higher true probabilities of presence. Two methods have been 

developed to impute true but unobserved presences from pseudo-absence data: (i) an 

expectation maximisation algorithm
129,139

 and (ii) model fitting using a scaled binomial loss 

function. Both of these methods, however, require prior knowledge of the population-wide 

ratio of absences to presences and assume that this value is spatially constant. These 

assumptions are invalid in our case where the ratio is both unknown and expected to vary 

spatially. To solve this problem we generated random pseudo-presence data in addition to 

pseudo-absence data. The pseudo-presence data were generated in the same manner as the 
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pseudo-absence data, except no pseudo-presences were allowed in areas lacking 

comprehensive evidence on the dengue presence/absence status (an evidence consensus 

threshold of -25 – see Supplementary Information A.4).  

 

C.3.4: Sampling Bias 

Observed presences represent the distribution of reported transmission identification rather 

than the actual distribution of the disease, particularly at the global scale. The BRT model 

does not account for the geographical distribution of presence data which can cause 

environmental bias in the data
95

. If this bias is not accounted for, the spatial distribution of 

fitted BRT model output will tend to mirror the distribution of survey efforts rather than the 

true distribution of the disease. Likewise, such bias will lead to a model interpretation which 

emphasises the importance of environmental factors in sampled areas, rather than those 

underlying the true disease distribution
95,124

. Our data was collected from a wide variety of 

independent surveys and therefore is unlikely to have a systematic sampling bias. 

 

C.3.5: Pseudo-data generation process 

From the specifications outlined above we used the following procedure to generate the 

pseudo-data: 

 

Algorithm A1: Pseudo-data generation 

STEP 1: The national and sub-national evidence consensus values 
2
 were converted to raster 

format and standardised (see S2.2), providing a consensus on dengue absence to presence on 

a scale  for each 5km × 5km pixel in a global grid.  

STEP 2: A random point was created on land and restricted to a maximum distance μ from 

any observed presence point.  
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STEP 3: A uniform random variable u  was generated on scale and the 

point in STEP2 accepted as a pseudo-absence if u> s  and as a pseudo-presence if u< s  and 

. These conditions ensured pseudo-absences could be generated in all but complete 

evidence-consensus countries and pseudo-presences could only be generated in areas of 

dengue presence, or uncertain dengue status countries and that both are weighted by country 

certainty on dengue status.  

STEP 4: STEP 2 and STEP 3 were repeated to generate np pseudo-presence points and na 

pseudo-absence points at a distance μ. 

 

C.4: Ensemble analysis  

We have identified the number (na and np) and geographical extent (μ) of pseudo-absences 

and pseudo-presences as the main factors affecting BRT model prediction and have presented 

methods to generate pseudo-data based on these parameters in an unbiased manner. However, 

there is no definitive procedure to choose the optimal values of these parameters to generate 

the most accurate predictive map. Several studies have attempted to outline recommendations 

for parameterising np, na and μ
110,111,124,131,140

 but none of these recommendations generalise or 

provide an unambiguous parameter selection strategy. 

 

To explore the effect of changing these parameters, a sensitivity analysis was performed 

using different combinations of pseudo-data generating parameters np, na and μ. For the 

sensitivity analysis, the number of pseudo-absences (na) and pseudo-presences (np) were 

defined as a proportion of the total number of actual data points (8,309). The proportions 

used for generating pseudo-absences were 1:1, 2:1, 4:1, 6:1, 8:1, 10:1 and 12:1 and pseudo-

presences were 0:1, 0.01:1, 0.025:1, 0.05:1, 0.075:1, 0.1:1. The pseudo-data were also 

generated within a restricted maximum distance (μ) from any actual presence point, and μ 
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was varied through 8 distances: 5 (~555km), 10, 15, 20, 25, 30, 35 and 40 arc degrees. All 

combinations of these parameter values resulted in a total of 336 (7na x 6np x 8μ) individual 

input data sets and BRT models. 

 

From the sensitivity analysis it was clear that for all parameter combinations of np, na and μ, 

there was a similar degree of predictive performance, with all models showing a good 

predictive capacity. However, this is potentially misleading, as models with similar predictive 

accuracy do not necessarily translate to similar predictive distributions. There can be a high 

variance in the predictive distribution of two models, which share a similar predictive 

accuracy
128,141,142

. The reason for this discrepancy is that each individual parameter 

combination, and resulting input data, contains some independent information about the true 

distribution. It follows that each parameter combination data set is a sample of the possible 

states of the real data distribution
143

, so that all parameter combinations represent a null 

distribution of possible states. 

 

Therefore, rather than selecting a single BRT model from the sensitivity analysis, we used all 

336 BRT sensitivity models in an ensemble
141,142,144

 and evaluate the central tendency as the 

mean across all 336 BRT maps.  

 

In addition to the predictive map, all prediction (C.2.4) and summary statistics (C.2.3) were 

also averaged across all 336 BRT sensitivity models. 

 

C.5: Overview of Map Generation  

The fitted BRT ensemble map was produced at a 5km × 5km resolution. On this predicted 

map we created risk exclusion masks based on (i) the temperature suitability model 
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(Supplementary Information B.3.2) and (ii) the definitive extent of dengue virus 

transmission
2
. Pixels in which the temperature regime provided no window within an average 

year for completion of the extrinsic incubation period were considered at zero risk. Areas 

with an evidence consensus on dengue absence (<-25) 
2
 were masked in the final risk map. 

 

C.6: Output maps and partial dependence plots  

The final BRT map at 5km × 5 km resolution with the overlaid exclusion masks is shown in 

Figure SC1 below. Our map predicts a ubiquitous probability of occurrence throughout the 

tropics, with the highest risk in the Americas and Asia. Predicted probability of occurrence in 

Africa, while more unevenly dispersed than in other tropical endemic regions, is much more 

widespread than suggested by previous maps. Across all 336 BRT models, the average 

prediction performance was high (Table T2), indicating good model fits. Examination of the 

partial dependence curves (Figure SC2) reveals that the main predictors contributing to the 

occurrence map were precipitation (accounting for 26.1% of the variation explained by the 

model), temperature suitability (21.7%) and urban covariates (16.1% and 13.2% for the 

categorical urban and peri-urban demarcation respectively and 13.5% for urban accesibility). 

The maximum precipitation covariate caused an increase in response (probability of 

occurrence) up to rainfall values of around 600mm per year, after which, there is no further 

effect on the response. Probability of occurrence increased approximately linearly with 

temperature suitability. For urban accessibility there was a sharp decline in response as the 

travel time to a city of 50,000 persons increased, with travel times greater than 5 hours 

causing no effect on the response. Relative poverty (4.3%) caused a decrease in response as 

the GDP adjusted for purchasing power parity increased. Minimum precipitation (3.4%) and 

NDVI (1.65%) did not contribute greatly to the model.
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Figure SC1.BRT probability of occurrence map. Map predicted at a 5km × 5 km resolution with exclusion criteria defined in Supplementary 

Information C.5.  
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Figure SC2. Partial dependence plots averaged over all 160 BRT ensembles. Black lines 

represent the mean partial dependence over all 336 BRT ensembles and grey envelopes the 

standard deviation from the mean. The y-axis is the untransformed logit response and x-axis 

is the full range of covariate values. The percentage values in parentheses show the relative 

contributions averaged over all 336 BRT ensembles. 
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Table T2. BRT prediction statistics 

 Mean Standard Deviation 

Kappa 

AUC 

True skill statistic 

Sensitivity 

0.51 

0.81 

0.50 

0.69 

0.036 

0.020 

0.036 

0.036 

Specificity 

Percent correctly classified 

0.81 

0.75 

0.026 

0.017 

 



 53 

 

D: Global burden and population-at-risk estimation 

D.1: Overview 

Despite the widely quoted figure of 50-100 million dengue infections per year
145-147

, 

contemporary estimates of the annual global incidence of dengue have a limited evidence 

base. The first estimate in 1988 suggested an approximate figure of 100 million infections per 

year, based on assuming a ten percent annual infection rate amongst a population-at-risk of 

one billion
148

 (Figure SD1). This annual infection rate was based on data from a small 

number of epidemics in the latter half of the 20
th

 century. Although this was only ever 

intended as an approximate estimate, the figure of 100 million is still widely cited, despite the 

realisation of a much larger population-at-risk and a more variable infection rate than was 

originally assumed. 

 

A revision was made in 1994 using the same methodology
149

, when it became clear that 

dengue was far more widespread and there was increasing uncertainty over the proportion of 

inapparent infections. The evidence base for the four percent annual infection rate in this 

work is unclear and results in a lower estimated burden of 80 million infections per year. As 

more information became available concerning (i) the ratio of dengue haemorrhagic fever 

(DHF) cases to dengue fever (DF) cases and (ii) the ratio of deaths to DHF cases, a figure of 

50-100 million infections globally gained more support
150,151

 (Figure SD1). This figure has 

since been adopted by the WHO and been their estimate for the last 15 years. 

 

In the absence of accurate or suitable estimates for the apparent-to-inapparent infection ratio 

and with a decline in global dengue reporting
152

, progress on global burden estimation was 

hindered. Attention moved to estimating numbers of DHF and DF clinical cases using 
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generic methods of “expanding/inflating” reported DF or DHF cases. The DHF case 

reporting in South East Asia (SEA) was considered to be the most accurate in the early 

2000s, and therefore sex-specific DHF incidence values were estimated for SEA and then 

extrapolated to give a global estimate of 0.4-0.5 million cases of DHF a year
153

. Using this 

figure and several estimates of the ratio of DHF to clinical DF cases, a global figure of 8 

million cases of clinical DF was then suggested
154

. A similar figure of 9 million clinical DF 

cases was presented in the WHO Global Burden of Disease 2004 update, which used reported 

dengue deaths and separate estimates of the DHF-to-clinical DF cases ratio for SEA and the 

Americas
155

. Methods similar to these have also been widely used to estimate global deaths 

due to dengue. 

 

While the apparent-inapparent link may, until now, have been insufficiently evidence-based, 

many attempts have been made to calculate national incidence estimates for the purpose of 

economic burden estimation
156-164

. These vary in their thoroughness, but the best approach 

has been to use locally relevant cohort studies to derive sex- and age-specific estimates for 

the apparent-inapparent ratio and then apply these to multi-year reported clinical DF datasets. 

A more common approach is to gather a range of these ratios, which range from 1:0.3 to over 

1:100, and then apply them to national clinical dengue case data of variable reliability. The 

major problem with this approach is geographical variation in dengue transmission intensity, 

treatment-seeking behaviour and healthcare treatment and reporting capacity. A factor that is 

often overlooked is that many of the cohort studies employ active fever surveillance in their 

study population which reduces barriers to healthcare access, thus modifying treatment-

seeking behaviour
165

. This ensures simply converting nationally reported numbers of clinical 

dengue cases to infections using a common factor is likely to give a significant underestimate 

of true infection incidence. 
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Although the inflation factor approach is unsuitable on a global scale, this method of 

inference based upon cohort studies has reinforced the estimate of 50-100 million infections. 

Of the 2.2 million clinical dengue cases reported to the WHO in 2010, 1.7 million of these 

were reported in the Americas
166

. Therefore, using an average range of previously-used 

expansion factors for this region (6-27)
159,164,167

 would suggest that between 10 and 46 

million dengue infections occur in the Americas alone
164

. The variability in national clinical 

dengue case data has prompted the latest estimate, which excludes it altogether. Beatty et 

al.
168

 redefined a dengue-endemic country as having a published record of dengue occurrence 

or sharing a significant border with one that does. This suggested a population-at- risk of 3.5 

billion from which average inflation factors suggest a total of 100-200 million dengue 

infections and 36 million cases of clinical DF per year
168,169

. This generalized single factor 

global approach is unlikely to give accurate national case burden estimates, however, their 

focus on creating a solid evidence base for the global extent of the disease creates a better 

basis for initial burden estimates than approaches that use reported case data of variable or 

unknown quality. 

 

Considering the variable data sources on which these estimates are based, it is perhaps 

surprising that confidence intervals are not presented. With the exception of Rigau-Perez et 

al.
150

 and Beatty et al.
168,169

, no existing estimates have conveyed the uncertainty present in 

dengue burden estimation (Figure SD1), yet we consider this a vital step for accurate 

interpretation of these estimates. 

 

Our study has produced the first cartographic based burden estimate for dengue. We 

assembled an extensive data set of 54 cohort studies defining incidence rate in person years 
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with estimates of the inapparent-to-apparent ratio. Using a hierarchical Bayesian model, we 

estimated a relationship between the cohort incidence data and our previously generated BRT 

(boosted regression trees see Supplementary Information C) map of the probability of 

occurrence of dengue infection (see main text), following a rubric applied previously to 

malaria
170,171

. Using this relationship, we provide estimates of annual inapparent and apparent 

dengue infections with confidence intervals at the national, continental and global scales. 

 

Figure SD1. Global estimates of dengue infections. Comparison of previous estimates of 

total global dengue infections in individuals of all ages, 1985 to 2010: ▲ Halstead et al. 

1988
148

, ▲ Monath et al. 1994
172

, ▲ Rodhain et al. 1996
173

, ▲ Rigau-Perez et al. 1998
150

, 

▲ TDR/WHO. scientific working group 2006
174

, ▲ Beatty et al. 2009
175

, ▲ apparent 

infections from this study. Estimates are aligned to the year of estimate and, if not stated, 
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aligned to the publication date. Red shading marks the credible interval of our current 

estimate for comparison.  

 

D.2: Assembly of cohort studies 

D.2.1: Existing incidence data 

Estimating incidence of dengue fever is complicated by a spectrum of clinical 

manifestations
176

 and variable reporting capacity of different healthcare systems. Therefore, 

the most accurate way of comparing incidence rates in different locations worldwide is 

through serological cohort studies following a standard methodology. Due to the high 

proportion of inapparent dengue infections
177

, active case detection must go beyond 

improved clinical surveillance. Estimates of total cohort dengue infections must observe 

immune responses to dengue virus antigens before and after the dengue transmission season 

178
. Dengue virus-infected humans exhibit dengue-specific Immunoglobulin M (IgM) and 

Immunoglobulin G (IgG) immune responses. High IgM titres can be observed in primary 

infections as soon as four days
179

 after the onset of fever and persist for another 30-90 

days
180

. IgM responses can also be seen in secondary dengue infections, but the response is 

often slower, weaker and shorter lived
181

. In contrast IgG levels rise around seven days
179

 

after the onset of fever in primary infection and can be observed for life
181

 thus providing a 

good indicator of previous dengue exposure. The total number of primary infections can be 

obtained by observing the number of IgG-negative individuals that seroconvert to IgG-

positive status before and after the transmission season. The number of post primary dengue 

infections can be estimated by identifying individuals with both IgG and IgM responses after 

the dengue transmission season. This is likely to under-estimate post primary infections due 

to weaker secondary IgM responses
181

 and the 30-90 day window for IgM detection
180

. 

Experimental protocols often assume infection is the result of certain predominant serotypes 
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that may be circulating in a given study region at the time and thus monitoring may be type-

specific, resulting in further underestimation if multiple serotypes are circulating. IgM and 

IgG serologic surveys also cross-react with other flaviviruses
182

 and therefore need situation-

specific controls to estimate sero-conversions to dengue alone. However, despite these 

limitations, serological cohort studies represent the best possible estimation of local incidence 

for dengue.  

 

Cohort studies are often difficult to compare due to varying demographic dynamics. For 

dengue, while higher incidence has been reported in paediatric populations
183

, adult 

populations have exhibited higher incidence in other settings, so the demographic distribution 

of dengue infection remains unclear. Therefore, having no robust function with which to 

adjust for age and no clear demographic basis for exclusion of available information, our 

assemblage of cohort studies comprised incidence in all age groups. The inclusion criteria 

developed for the cohort study database are described below. 

 

D.2.2: Inclusion criteria 

(i) The study took place during or after 1960 to coincide with the date range of our 

occurrence database. 

(ii) Surveys were longitudinal and involved active case detection of sero-conversion to 

dengue type-specific antibodies in a defined cohort. 

(iii) Monitoring of sero-conversion through paired blood samples was undertaken at least 

before and after each dengue transmission season for IgG immune responses, or at 

least every 90 days for IgM immune responses
180,184

. 

(iv)  Data was presented in a way that enabled the total number of infections and the 

number of person-years of observation to be obtained. 
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(v) All dengue infections were identified from blood samples that distinguished primary 

and secondary infections using all or one of the following methods: (a) 

Hemagglutination inhibition (HI), (b) plaque reduction neutralization test (PRNT) 

or (c) enzyme-linked immunoabsorbant assay (ELISA). 

(vi)  Surveys were conducted over at least a 12 month period, or else over a clinically 

defined period of transmission with blood samples taken before and after this 

period. 

The location, total number of infections, person-years of observation and the ratio of 

inapparent to apparent (I:A) infections was recorded. Definitions and methods for detecting 

apparent infections varied from study to study but adhered to the following general criteria: 

(i) an apparent case was any manifestation of febrile illness accompanied by fever greater 

than 38
o
C; (ii) such infections were detected either through enhanced clinical surveillance, 

retrospective cohort participant questionnaires, or systematic surveillance of school or 

workplace absentees. Therefore our definition of an inapparent infection is an infection that 

does not have any impact on the day-to-day life of the subject. As such, an inapparent 

infection will not modify a person’s regular schedule e.g. attending school, register as an 

extraordinary period of ill-health that can be recalled when later questioned, nor will it 

prompt any treatment-seeking beyond self medication. While each of the separate symptom 

detection methods has the potential to underestimate apparent infections, they allow us the 

best possible estimate of the I:A ratio. 

 

D.2.3: Summary 

A search for “dengue cohort study” in PubMed, subsequent reference tracking, and personal 

requests enabled the identification of 55 geographically unique locations from 38 cohort 

studies in 19 countries in a variety of regions. Estimates of the I:A ratio were available for 40 
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locations (27 cohort studies, 15 countries). We excluded one cohort study by Teixeira et al
185

, 

as both the reported incidence and I:A ratio were an order of magnitude outside the others 

observed. Excluding this study, the mean reported incidence across all cohort studies was 

calculated as 129.7 per 1000 person years (standard deviation ±135) and the mean I:S ratio as 

4.3 (standard deviation ± 2.8). The incidence and I:S ratio from Teixeira et al
185

 was 706 and 

1555.55 respectively, which we deemed implausible given the other cohort studies. 

 

 

D.3: Relationship between incidence and probability of occurrence 

We determine the relationship between incidence and probability of occurrence using a 

Hierarchical Bayesian linear model
186

. We chose a Bayesian formulation due to statistical 

robustness, explicit handling of uncertainty, transparent variable and model selection and the 

ease of incorporating complex nonlinear functions
186

. The Bayesian hierarchical model is 

defined as a tiered structure where, at the first level, a likelihood function defines the 

probability distribution that generates the data (the data model - [data|process,prameters]) , 

at the second level, prior distributions define the parameters of the likelihood function (the 

process model - [process|parameters]), and at the third, and final level, hyper prior 

distributions define the prior parameters (the parameter model - [parameters]). The end result 

of the product of these three distributions is proportional to the posterior distribution which is 

the distribution of the process and the parameters [process,parameters|data]. 

 

D.3.1: Data model 

Modelling count data (incidence per 1000 person years) imposes restrictions on the choice of 

probability distribution as an event count is the realization of a nonnegative integer-valued 

random variable
187,188

. The foundation building block in this modelling framework is the 
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Poisson regression model where the variance of a random variable is constrained to equal the 

mean
188

. However, a more broadly applicable and general specification – the negative 

binomial model
170,189

 can be used to include the case when the variance exceeds the mean. 

We choose this distribution to ensure maximum flexibility in modelling our data: 

 

where x is the incidence per 1000 person years, f(x) is the mean or rate function defining how 

the mean value of incidence changes with the probability of occurrence and r(x) is the noise 

or dispersion function, representing the variance in population-wide levels of incidence. 

 

D.3.2: Process model 

We model the negative binomial rate function,  using a Gaussian process
170,190

. The 

Gaussian process model ensured that no parametric form was imposed on , thereby 

allowing for a data-driven approach. In this context, the Gaussian process was parameterised 

with two components: a mean function ( , controlling the central tendency of the 

function at a given value of ) and a covariance function ( ), controlling the second 

order characteristics of the function, such as differentiability). For M a quadratic function: 

 was used and for C we chose a highly smooth Gaussian kernel
191

 

characterised by two parameters that control for the scale (Scale), and amplitude (Amp) of the 

covariance
190

.  

 

We included several constraints to prevent biologically implausible scenarios from being 

included in the model. First the Gaussian process was constrained to include positive values 

only if to prevent impossible negative incidence values. Second the Gaussian 

process was conditioned to include the assumption that at zero probability of occurrence, 
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there is zero incidence . Third, the Gaussian process was constrained to have at 

most one inflection point (excluding a saddle inflection point), thereby allowing only 

ecologically simple models without multiple peaks, troughs or saddles. 

Previous approaches have modelled the dispersion or noise function
192

 as a quadratic function 

incorporating specific prior biological knowledge about the disease being modelled
170

. For 

our dengue incidence data we lack any such prior knowledge, and therefore to prevent any 

bias and unjustifiable complexity we parameterise the dispersion function as constant, that is 

. 

 

D.3.3: Parameter model 

Hyper priors for the Gaussian process rate function parameters, 

 were set to uninformative
186

 uniform distributions with 

sensible ranges. This was done to express vague prior knowledge about these parameters. The 

hyper parameter for the dispersion function,  was set to an uninformative hyper 

prior 
186,192

 requiring no defined ranges. 

 

D.3.4: Posterior inference 

The model was fitted and the posterior characterised using Markov Chain Monte Carlo 

sampling (MCMC)
192-194

. The final models were run over one million iterations, sampling 

every 500 iterations to prevent autocorrelation effects between samples
186

. Additionally, the 

first 200,000 samples were discarded (“burn in”) to ensure that the posterior was drawn from 

the equilibrium distribution of the Markov chain. This gave a total of n=1600 posterior 

samples for all the model parameters. Visual inspection of the MCMC trace and Geweke 

plots
192,195

 were used to check model convergence. The output of the burden model consists 
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of samples from the joint posterior distributions for all the model parameters 

 where . For all individual 

combinations of these parameter samples (  

individual curves can be constructed, using the data model (equation 2), that represent a 

realised relationship between incidence and the probability of occurrence ( . The full set of 

these realisations ( ) represents a joint model for the data and unknown 

parameters. 

 

The entire model fitting procedure was performed separately for apparent and inapparent 

infections, resulting in two separate burden models derived from the I:A ratio measured in the 

serological cohort studies. It should be noted that only 39 of the 54 cohort studies provided 

information on these ratios and, therefore missing ratio values were imputed in the 

MCMC
192

. The results of the burden models are shown in Figure SD2. 

 

D.4 Overview of map generation and burden estimates 

Each burden model (apparent and inapparent) provided a posterior set of relationships (  

between the probability of occurrence and incidence. From each realised relationship  the 

probability of occurrence map was translated into an incidence map. We did this for all 

relationships in  generating a distribution of incidence maps, reflecting the posterior 

predicted relationships. For each of these maps, using a human population surface for 2010
80

, 

infection numbers were estimated on a global scale. Stratification of these estimates into 

national and subnational divisions is discussed in Supplementary Information E. 



 64 

 

Figure SD2. Bayesian modelled relationship between the probability of occurrence and 

incidence for inapparent and apparent number of infections. The data are the points, the 

bold lines are the medians and the envelopes are the 0.25, 0.5 and 0.95 credible intervals 

centered on the median displayed with progressively lighter shades. 
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E: Reconciling cartographic and surveillance-based burden 

estimates 

E.1 Overview 

This section provides a detailed summary and discussion of apparent and inapparent dengue 

infections at a country level as estimated by our cartographic methods described in 

Supplementary Information D. These are compared to surveillance-based burden estimates of 

dengue cases reported to the World Health Organization (WHO)
166,196-198

. Here we explain 

how the order of magnitude difference between these two estimates is feasible if we consider 

the systematic underreporting introduced at multiple stages along the pathway that separates 

an apparent infection in the community with a reported clinical dengue case at the national 

level. We then go on to explain and quantify each of these steps in detail using a comparative 

analysis of previously published estimates for each step to reconcile the two differing burden 

estimates. E.2 describes the data sources used in the surveillance-based method for cases 

reported to the WHO. E.3 describes the global distribution of apparent dengue infections as 

estimated by the cartographic approach and clinical cases as reported to the WHO using the 

surveillance-based approach. In E.4 the relevant data loss steps are discussed to reconcile 

these two estimates. 

 

E.2 Surveillance-based burden data sources 

National annually reported numbers of diagnosed dengue cases were taken from the WHO 

regional office websites
166,196-198

. While DengueNet
199

 remains the central repository for 

dengue data within the WHO, its accessible database contains only sporadic case numbers 

since 2005. By obtaining case numbers directly from WHO regional offices, we were able to 
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obtain a more contemporary estimate of national burden. For this analysis we used the 

average annual case numbers from the three most recent complete years available — 2009-

2011 for Pan American Health Organization (PAHO) and Eastern Mediterranean Region 

Office (EMRO), 2008-2010 for South East Asian Region Office (SEARO) and Western 

Pacific Region Office (WPRO). Case numbers presented by PAHO (47 countries) and 

SEARO (11 countries) are based exclusively on country reports to these offices, which are 

themselves based around the WHO clinical guidelines
176

. WPRO case numbers come from 

country reports to WPRO (23 countries) and country Ministry of Health websites (4 

countries). Case numbers reported by EMRO (1 country) are from the WHO country offices 

and are only available in sporadic reports. Imported cases were excluded when a 

differentiation between imported and indigenous cases was made. There is no legal obligation 

for countries to report annual case numbers to the WHO, nor is any attempt made to 

standardise what countries report beyond issuing standard guidelines
176

. While diagnostic 

limitations and a lack of standardisation make international comparisons difficult for dengue, 

we believe that comparing country reports of diagnoses based on WHO guidelines forms the 

most reliable and internationally comparable source for annually reported diagnosed dengue 

cases. 

 

Here we are interested in comparing surveillance-based estimates of total symptomatic 

clinical dengue cases (dengue fever (DF) + dengue hemorrhagic fever (DHF) + dengue shock 

syndrome (DSS) or dengue (DW
-
) + dengue with warning signs (DW

+
) + severe dengue(SD)) 

with our own cartographic burden estimates of total apparent infections 
176,200

. While 

countries are instructed to report only laboratory confirmed cases large case numbers often 

make it prohibitively expensive to laboratory-confirm every suspected clinical case. It is 

therefore not uncommon for countries to report suspected dengue (based on clinical 
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diagnosis) and confirmed dengue (based on laboratory diagnosis) cases as a single combined 

figure. The distinction into DF+DHF+DSS or DW
-
+ DW

+
+SD is then often made using a 

country-specific adapted WHO case definition which may or may not be reported in the 

WHO figures (Table T3) 
201,202

. In this analysis we took the broadest spectrum of clinical 

manifestations available in the WHO data, however it is well known that reporting fidelity 

and standardisation of the clinical forms is far from globally consistent and our comparison 

with cartographic burden estimates must take these regional differences in surveillance into 

account (Table T3). 

 

Table T3. Levels of reporting in the four World Health Organization (WHO) regions that display 

dengue data. PAHO = Pan American Health Organization, WPRO = Western Pacific Region Office, 

SEARO = South East Asian Region Office, EMRO = Eastern Mediterranean Region Office, DF = 

dengue fever, D = dengue, SD = severe dengue.  

 

WHO region Total 

DF/D 

DF(suspected/confirmed) SD Deaths Percentage of global 

dengue cases reported 

2008-2010 

PAHO     73 
WPRO     14
SEARO  

*   12
EMRO     1

 

* Available for some countries for some years. 

 

E.3 Country-level burden estimates  

In 2010, the total global apparent dengue infection burden estimated in this study (96 million, 

credible interval = 67-136) is substantially larger than the global number of reported clinical 

dengue cases (2.2 million). However, the burden rank of each country is largely consistent in 

both estimates and the differences in absolute burden estimates often show a common factor 

that suggests an intrinsic loss to underreporting.  
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In the countries of the Americas, both approaches predict a concentration of the burden in 

four countries: Venezuela, Colombia, Mexico and Brazil (Figure SE2). However, in contrast 

to the WHO figures, our estimate suggests an additional sizable contribution from Peru, 

Guatemala and the Caribbean islands of Cuba and the Dominican Republic. Outside of these 

countries both approaches agree on a uniformly low burden. Our estimate for total apparent 

infections in the Americas (13.3 million) is around seven times that reported by the WHO. 

 

WHO estimates were not available for the African regions, with the exception of Cape Verde. 

For Cape Verde, our estimate of 10,515 cases (Figure SE3) is comparable with the WHO 

reported figure of 10,760. Elsewhere, we predict the highest burden in the areas of high 

population density in the countries of Nigeria, Egypt, Democratic Republic of the Congo, 

Ghana and Uganda. In addition, total apparent burden is considerable in a large number of 

countries, with 32 having a burden of over 50,000 apparent infections per year, contributing 

an additional 15.7 million apparent infections. 

 

In Asia, both approaches predict a high burden in South East Asia and the Indian 

subcontinent (Figure SE4). Our estimates from countries in South East Asia are consistently 

around 40 (20-60) times those reported to the WHO. Despite a large number of countries 

falling within this interval, our figures for China (6.5 million) and India (32.5 million) are far 

above what is reported to the WHO. In both cases, large populations are combined with large 

areas of high suitability for dengue. We suggest that under-reporting of dengue in these two 

countries is a significant part of reconciling the gap between our global burden estimates and 

cases reported to the WHO. China and India contribute 58% of the total burden for Asia (66.8 

million apparent infections per year). It is clear that reducing the uncertainty in the estimates 
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for these two countries is important for reducing uncertainty for total global estimates. 

Achieving this will require better evidence consensus in low consensus areas, more 

occurrence points, particularly where our data is currently sparse, and additional cohort 

studies across a range of transmission intensities. 

 

In Oceania, both approaches predict a low burden, with our predictions suggesting that only 

Papua New Guinea faces a burden of over 50,000 apparent infections a year (Figure SE1). 

Considering their population size, Fiji and Samoa also contribute a sizable portion of 

Oceania’s total 178,000 apparent infections. Our predictions are, on average, 40 times greater 

than the WHO estimates, although this is variable due to low reported case numbers. 
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Figure SE1. Number of apparent infections (red) and number of diagnosed dengue cases reported to the WHO (black) per country in 

Oceania. 



 71 

 

 

Figure SE2. Number of apparent infections (red) and number of diagnosed dengue cases reported to the WHO (black) per country in 

the Americas. 
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Figure SE3. Number of apparent infections (red) and number of diagnosed dengue cases reported to the WHO (black) per country in 

Africa. Only Cape Verde provided any reported cases to the WHO. 
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Figure SE4. Number of apparent infections (red) and number of diagnosed dengue cases reported to the WHO (black) per country in 

Asia.
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Country  Apparent  Apparent  Apparent  Inapparent  Inapparent Inapparent WHO. CI  CI  

Name Mean 2.50% 97.50% Mean 2.50% 97.50% estimates Ratio  Absolute  

                Rank Rank 

Aruba 3,165 1,451 5,820 9,715 5,174 16,299 1,762 22 116 

Afghanistan 81,687 36,803 138,574 255,681 128,224 399,333 
 

33 63 

Angola 292,178 196,712 419,141 896,115 643,138 1,210,316 
 

107 37 

Anguilla 519 216 1,006 1,571 770 2,767 1,418 16 133 

Netherlands Antilles 6,546 3,199 11,930 19,765 10,998 32,919 1,690 24 104 

Argentina 254,470 162,631 370,798 787,499 532,735 1,082,768 9,337 85 41 

American Samoa 2,414 935 4,883 7,316 3,421 13,350 373 12 119 

Antigua and Barbuda 3,226 1,592 5,800 9,739 5,467 16,031 3 28 118 

Burundi 77,023 42,810 119,252 238,713 145,122 345,040 
 

62 71 

Benin 213,030 143,875 311,527 651,489 469,940 894,900 
 

96 46 

Burkina Faso 257,950 167,531 370,996 797,426 548,974 1,084,392 
 

95 42 

Bangladesh 4,097,833 2,952,879 5,608,456 12,581,091 9,519,133 16,359,636 568 135 7 

Bahamas 10,971 6,306 18,003 33,335 21,183 50,405 2,336 53 101 

Belize 9,128 6,208 13,270 27,878 20,264 38,061 1,368 101 108 

Bolivia 181,219 122,119 260,474 555,702 399,308 751,368 38,640 106 53 

Brazil 5,371,268 3,952,287 7,283,317 16,404,160 12,672,363 21,111,729 765,769 139 4 

Barbados 9,398 4,753 16,653 28,343 16,213 46,077 1,239 32 100 

Brunei Darussalam 12,732 6,776 22,541 38,421 22,836 62,606 116 35 94 

Bhutan 4,793 2,109 7,946 15,042 7,343 23,177 147 38 111 

Central African Republic 59,436 34,672 93,206 183,305 117,623 266,963 
 

63 74 

China 6,523,946 4,683,881 8,919,000 20,062,625 15,083,630 26,126,115 186 133 3 

Cote d'Ivoire 603,431 427,796 845,552 1,843,448 1,383,217 2,435,397 
 

122 27 

Cameroon 497,871 350,920 701,594 1,521,543 1,132,524 2,022,270 
 

120 29 
Democratic Republic of the 
Congo 947,801 629,617 1,356,953 2,917,767 2,062,475 3,941,733 

 
103 15 

Congo 114,173 75,677 168,494 347,147 246,770 480,451 
 

88 67 

Cook Islands 712 225 1,766 2,155 827 4,711 60 3 129 

Colombia 1,073,891 783,699 1,465,285 3,281,089 2,515,002 4,243,729 80,634 137 17 

Comoros 16,538 10,228 25,414 50,733 34,230 72,452 
 

73 96 

Cape Verde 10,879 6,126 17,651 33,547 20,972 50,226 10,760 55 102 

Costa Rica 117,677 79,912 168,993 361,243 261,580 488,074 17,524 109 69 

Cuba 372,825 266,724 518,849 1,132,115 856,787 1,489,340 23 123 34 

Cayman Islands 1,987 1,058 3,404 6,016 3,599 9,452 3 41 126 

Djibouti 16,946 6,291 35,062 52,407 23,568 97,101 
 

11 86 

Dominica 2,327 1,286 3,880 7,052 4,347 10,850 227 47 125 

Dominican Republic 336,410 213,296 519,207 1,017,290 698,134 1,466,630 7,383 76 30 

Ecuador 310,448 220,963 430,732 951,375 713,884 1,248,114 2,066 124 40 

Egypt 1,499,568 965,744 2,164,954 4,645,241 3,186,358 6,312,307 
 

91 13 

Eritrea 42,184 19,704 70,386 131,736 68,901 202,693 
 

39 75 

Ethiopia 651,184 320,718 1,041,952 2,037,422 1,089,989 3,038,520 
 

48 16 

Fiji 24,969 18,152 34,109 76,371 58,437 99,072 759 136 93 
Micronesia, Federated States 
of 3,567 2,158 5,701 10,872 7,153 16,136 23 61 121 

Gabon 44,792 25,942 74,225 135,942 86,746 208,083 
 

51 77 

Ghana 687,110 486,967 963,366 2,093,455 1,571,708 2,765,615 
 

121 22 

Guinea 192,067 125,712 275,871 593,001 412,489 803,659 
 

97 50 

Guadeloupe 17,466 10,027 28,528 52,680 33,409 79,826 14,754 56 89 

The Gambia 46,476 27,000 76,385 141,685 90,603 214,567 
 

54 76 

Guinea-Bissau 35,011 20,615 55,465 107,616 69,781 157,739 
 

60 82 

Equatorial Guinea 16,166 10,729 23,256 49,799 35,252 67,404 
 

100 99 

Grenada 3,723 1,891 6,526 11,246 6,444 18,119 78 34 114 

Guatemala 322,243 231,037 443,795 988,330 745,518 1,289,753 10,073 127 39 

French Guiana 7,024 4,325 11,090 21,312 14,285 31,274 5,449 68 109 

Guyana 17,416 11,728 24,596 53,779 38,306 71,810 1,249 114 98 

Hong Kong 304,782 184,690 475,819 924,234 613,579 1,342,712 0 69 32 

Honduras 209,834 149,848 291,525 641,409 483,737 841,072 30,134 125 52 

Haiti 276,581 188,402 403,229 844,925 613,842 1,152,883 
 

98 38 

Indonesia 7,590,213 4,798,222 11,944,976 23,009,108 15,724,054 33,745,901 130,575 70 2 

India 32,541,392 23,809,852 44,196,670 99,692,319 76,480,648 128,730,948 12,484 138 1 

Jamaica 90,807 61,553 132,005 275,459 199,486 376,774 1,132 99 73 

Kenya 583,960 376,348 843,317 1,807,001 1,234,459 2,461,954 
 

92 24 
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Kyrgyzstan 11,135 3,300 22,437 35,093 12,827 63,199 
 

10 88 

Cambodia 404,533 282,589 568,752 1,243,325 918,191 1,649,357 11,247 119 33 

Kiribati 2,173 1,215 3,475 6,712 4,170 9,958 280 57 127 

Saint Kitts and Nevis 1,845 968 3,134 5,581 3,312 8,766 23 42 128 
Lao People's Democratic 
Republic 124,006 79,970 178,093 383,905 263,083 521,000 11,431 94 64 

Liberia 98,678 65,906 140,777 304,137 216,716 408,522 
 

108 72 

Saint Lucia 6,144 3,655 9,698 18,609 12,168 27,335 226 65 110 

Sri Lanka 673,544 445,991 1,027,403 2,042,226 1,447,987 2,910,693 22,902 80 18 

Macao 23,158 6,626 52,502 69,833 26,037 140,928 3 5 78 

Madagascar 264,443 159,191 393,246 821,514 526,343 1,148,447 
 

79 35 

Maldives 6,372 2,557 13,981 19,735 9,298 38,567 933 9 103 

Mexico 1,987,320 1,422,381 2,730,919 6,102,891 4,582,683 7,964,033 125,217 128 10 

Marshall Islands 1,891 757 4,195 5,774 2,687 11,424 
 

8 122 

Mali 194,903 125,686 281,231 602,552 411,989 820,354 
 

93 48 

Myanmar 992,954 669,765 1,408,977 3,056,420 2,191,868 4,098,171 16,824 111 14 

Northern Mariana Islands 2,862 1,235 5,493 8,704 4,406 15,167 
 

18 117 

Mozambique 418,090 287,800 586,770 1,285,737 935,627 1,707,800 
 

118 31 

Mauritania 27,859 14,145 44,508 86,922 48,185 129,140 
 

50 85 

Montserrat 178 73 342 545 269 952 1 17 137 

Martinique 14,845 8,099 25,136 44,766 27,271 69,900 12,918 44 92 

Mauritius 44,471 28,232 68,107 134,755 92,595 192,540 
 

78 81 

Malawi 220,050 139,738 319,955 680,097 461,604 931,479 
 

84 45 

Malaysia 983,619 546,225 1,746,771 2,969,671 1,817,360 4,835,731 45,664 37 12 

Mayotte 4,049 1,886 7,286 12,445 6,734 20,417 
 

25 112 

New Caledonia 7,423 3,988 12,665 22,609 13,639 35,448 3,301 43 105 

Niger 155,313 87,805 237,801 482,943 291,858 693,142 
 

67 51 

Nigeria 4,153,338 3,004,606 5,700,852 12,698,054 9,670,162 16,510,850 
 

132 6 

Nicaragua 172,439 124,002 239,068 526,486 399,249 689,249 11,763 126 60 

Niue 36 17 64 108 59 178 1 23 139 

Nepal 571,773 377,060 813,702 1,769,014 1,232,877 2,386,338 13 105 26 

Nauru 303 62 812 915 260 2,138 1 2 134 

Oman 41,524 23,179 63,745 129,341 77,707 185,832 
 

66 80 

Pakistan 3,414,749 2,455,183 4,680,780 10,481,756 7,898,303 13,642,888 11,787 131 8 

Panama 115,465 77,189 171,413 349,933 250,842 488,023 3,979 87 66 

Peru 472,445 316,552 677,480 1,454,164 1,038,618 1,964,217 19,005 104 28 

Philippines 3,076,863 1,990,758 4,810,993 9,339,425 6,493,806 13,584,794 77,598 74 5 

Palau 715 248 1,562 2,168 920 4,207 72 7 130 

Papua New Guinea 89,943 53,076 134,815 279,597 175,330 394,470 9 77 70 

Puerto Rico 146,564 75,342 262,390 441,460 256,280 727,231 11,201 29 43 

Paraguay 194,400 131,147 287,580 591,779 426,866 820,674 20,880 90 47 

French Polynesia 9,879 4,734 20,300 29,763 16,034 55,211 968 13 95 

RŽunion 21,329 13,990 31,231 65,378 46,176 89,873 
 

89 91 

Rwanda 79,509 35,540 132,872 248,565 124,383 383,373 
 

36 65 

Saudi Arabia 152,009 103,604 213,847 468,868 337,790 624,191 1,584 115 61 

Sudan 713,990 488,578 1,002,006 2,200,977 1,587,613 2,923,357 
 

116 20 

Senegal 314,220 215,380 449,280 962,422 703,216 1,295,220 
 

112 36 

Singapore 180,895 38,032 506,530 543,970 153,362 1,338,288 5,631 1 23 

Solomon Islands 8,250 4,572 12,834 25,552 15,642 37,037 1 59 107 

Sierra Leone 143,041 92,780 212,462 439,787 306,502 607,668 
 

82 59 

El Salvador 205,242 141,902 295,506 624,014 458,412 843,641 19,427 110 49 

Somalia 114,617 67,014 173,889 354,808 224,893 504,903 
 

71 62 

Sao Tome and Principe  5,372 2,326 10,714 16,289 8,203 29,361 
 

14 106 

Suriname 19,114 10,933 31,511 57,875 36,560 88,136 201 52 87 

Seychelles 2,677 1,375 4,589 8,173 4,772 12,922 
 

40 123 

Syrian Arab Republic 91,973 36,485 156,775 289,260 128,876 455,438 
 

26 58 

Turks and Caicos Islands 563 230 1,095 1,746 849 3,051 8 15 132 

Chad 145,525 85,538 218,800 451,621 286,219 637,502 
 

75 56 

Togo 189,659 132,343 268,471 578,418 429,007 770,252 
 

117 54 

Thailand 1,903,694 1,373,605 2,621,098 5,823,012 4,424,859 7,596,099 57,589 130 11 

Tajikistan 21,693 7,680 39,389 68,289 27,976 113,063 
 

19 83 

Tokelau 32 8 76 96 32 205 
 

4 138 

Turkmenistan 21,770 8,698 39,089 68,326 31,473 111,794 
 

21 84 

Timor-Leste 14,586 8,141 22,488 45,345 27,395 65,380 278 64 97 
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Tonga 3,494 1,938 5,852 10,584 6,528 16,323 166 46 120 

Trinidad and Tobago 48,180 31,084 72,602 145,572 101,375 205,512 1,255 81 79 

Tuvalu 155 48 348 488 188 968 
 

6 136 

Tanzania (United Republic of) 674,056 456,225 954,435 2,075,066 1,483,724 2,778,664 
 

113 21 

Uganda 602,260 395,846 859,315 1,862,790 1,297,641 2,511,403 
 

102 25 

Uzbekistan 105,943 45,117 180,283 332,456 158,412 521,236 
 

30 55 
Saint Vincent and the 
Grenadines 3,267 1,994 5,033 9,979 6,659 14,331 63 72 124 

Venezuela 866,172 625,770 1,193,623 2,634,742 2,011,455 3,434,002 73,796 129 19 

Virgin Islands, British 664 298 1,252 2,014 1,056 3,445 338 20 131 

Virgin Islands, U.S. 3,885 1,900 6,977 11,748 6,571 19,306 
 

27 113 

Viet Nam 2,603,443 1,890,174 3,578,852 7,965,912 6,081,413 10,371,255 110,217 134 9 

Vanuatu 4,274 2,365 6,764 13,222 8,155 19,401 111 58 115 

Wallis and Futuna 488 242 860 1,487 843 2,408 4 31 135 

Samoa 16,759 9,671 28,084 51,096 32,418 78,612 226 49 90 

Yemen 222,930 141,959 324,076 689,860 465,642 945,429 833 86 44 

Zambia 148,229 94,049 215,850 458,423 310,077 628,782 
 

83 57 

Zimbabwe 80,075 38,569 129,836 250,485 131,542 377,858 
 

45 68 

Table T4: Apparent and Inapparent mean and confidence (95%) burden estimates per 

country. The CI ratio rank is calculated as the ranked index of the apparent confidence 

interval difference divided by the mean
203

. The CI absolute rank is calculated as the ranked 

index of the difference in the apparent confidence interval. Only countries with evidence 

consensus > -25 are included. 

E.4 Comparing cartographic and surveillance-based burden estimates 

In E.3 we presented two estimates of dengue burden that were different by an order of 

magnitude. In this section, we reconcile these estimates by discussing and reasonably 

quantifying each step in the surveillance-based reporting system (Figure SE5). 
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Figure SE5. Hypothetical reporting chain of a dengue virus infection. Of the total number 

of apparent infections only around 30% will seek treatment at official healthcare facilities as 

opposed to alternative treatment options. Of the formally hospitalised infections, a large 

proportion are misdiagnosed, although total diagnosed infections is nearly counter balanced 

by non-dengue illnesses receiving a dengue diagnosis. Finally, technical, political and 

logistical barriers exist between the hospital and the governing bodies that result in fewer 

reported infections. These steps collectively ensure that the reported burden of dengue cases 

is only a small proportion of the total volume of apparent infections. The loss arrows 

represent an average estimate of the proportion of total apparent infections reported at each 

level, based on a comparative analysis discussed in E4. 

 

In our estimates we define an apparent dengue infection as any infection that results in visible 

symptoms, for example nausea or vomiting, rash, aches and pains, mucosal bleeding or 

restlessness
176

, sufficient to disrupt to the individual’s daily routine (seeD2.2). Our analysis 
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suggests a mean figure of 96 million (CI = 67-136) apparent dengue infections per year 

which captures the complete spectrum of dengue infections from mild to severe. However, of 

these total apparent infections, there is a wide range in severity
204-207

 which affects the 

treatment-seeking behaviours of infected individuals. The individual may choose to present 

to formal healthcare facilities operated by Ministries of Health, or the private or non-profit 

sectors. It is also the case, however, that many care-seekers will choose other options such as 

homeopathic medicine
208

 or ambulatory clinics
157

, or will simply use over-the-counter 

medicines if they seek treatment at all. These decisions depend on a myriad of factors 

including the availability of the various healthcare facilities and the cost associated with each 

option. As such, treatment-seeking behaviour for dengue is likely to vary considerably in 

time (e.g. epidemic versus inter-epidemic periods) and in space (e.g. country to country), as 

well as by socio-economic, cultural, age and gender groupings. Whilst some of these 

alternative treatment options may sometimes result in dengue reporting
209

, this is likely to be 

the exception rather than the norm, and in most cases will leave no formal record for 

inclusion in national health statistics
157

 
210

. Approximations of the fraction of dengue 

infections that present to formal healthcare facilities can be made from cohort studies where 

the hospitalised case numbers are recorded in parallel to the incidence of apparent infections 

in the general community. From the nine studies in D2.2 that measured both of these 

parameters
204,205,211-217

 an average of 30% (range 18-60) of apparent infections presented to 

formal healthcare facilities. If generalizable, this would suggest only 28.8 million of the 96 

million apparent infections would present to formal healthcare facilities. This is an upper-

bound estimate as these studies minimise financial, educational and logistic barriers to 

healthcare access thus modifying treatment-seeking behaviour. This is an important factor in 

reconciling these estimates because it accounts for the single biggest loss of dengue 

infections between total apparent infections and cases reported to the WHO.  
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Of the apparent dengue infections that do present to an official healthcare facility, a wide 

spectrum still exists between the mildest and the most severe clinical cases
179,218,219

. This 

complicates accurate diagnosis of dengue, particularly in the febrile phase where up to 12 

other major pathogens may be implicated in the differential diagnosis
179

. This creates two 

potential problems: (i) clinical diagnosis of dengue infections as other febrile illnesses 

(under-diagnosis) and (ii) diagnosis of non-dengue febrile illnesses as clinical dengue (over-

diagnosis). Under-diagnosis of dengue is common in situations where the disease has a less 

familiar clinical presentation as compared to other febrile illnesses, for example misdiagnosis 

as malaria in Africa
220

. Even in cases where dengue is a common diagnosis, often the rigidity 

of the case definition neglects the broad spectrum and transitory nature of symptoms 

presented
201,202,221-226

. The extent of under-diagnosis can be estimated by comparing 

independent attempts to calculate the positive predictive value of a particular clinical dengue 

case definition. The positive predictive value gives the probability that the case definition 

used by the hospital will accurately diagnose a true dengue infection. A comparison of case 

definitions based on the 1997 WHO clinical guidelines
200

 for diagnosis of DF revealed an 

average positive prediction value of 57% (range 16-87)
226-233

. Over-diagnosis of dengue is 

likely to occur in the later stages of an epidemic when healthcare services are overwhelmed 

and a diagnosis of dengue is more likely to be suspected over other clinically similar 

infections
234

. It is also possible to quantify over-diagnosis by observing the proportion of true 

dengue infections, as determined by laboratory confirmation, out of the total number of 

clinical dengue diagnoses. This information was extracted from a collection of 29 published 

clinical outcome studies available on request. We found that, on average, true dengue 

infections make up only 60% of total clinically diagnosed dengue cases. Of course, over-

diagnosis can be reduced when laboratory confirmation is available for clinically-diagnosed 
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samples; however, this makes up only a small proportion of globally-reported dengue cases 

(6.9% of total cases reported to WHO regional offices in 2010)
166,196-198

. If we again 

generalise these figures globally, the suggested 28.8  million presenting to 

official healthcare facilities is further reduced to 16.4 million in light of 

under-diagnosis, 27.4  if over-diagnosis is included as well, and 26.6 

 million taking into account both under and 

over-diagnosis with laboratory confirmation available for 6.9% of clinical samples. 

 

Once a clinical or laboratory diagnosis of dengue has been given, the remaining step in the 

reporting pathway is for this case to be incorporated in the national health management 

information systems (HMIS) and then to the WHO. The systems in place to transfer these 

data from the hospital to the WHO vary widely in their use of technology and frequency of 

reporting. While many health system records are now computer-based, much of the primary 

reporting is still gathered over the telephone or by fax
235

 which creates inherent 

standardisation issues. Furthermore, gaps in weekly reporting schedules can be observed 

during national holidays or during temporary shortages of available staff and/or funding. 

These logistical errors are compounded by political conflicts of interest in what is reported 

and how it is used to avoid accusations of liability. Thus, communication through HMIS 

systems will inevitably result in minor data losses. Although a lack of available data makes 

this step difficult to quantify, we were able to estimate the data loss at the final step of HMIS 

reporting to the WHO. A comparison of reported DF cases on ministry of health (MoH) 

websites with those reported to the WHO from 2009-2011 found that 95% of total cases were 

reported to the WHO 
166,196-198

. No persistently under-reported countries were identified, but 

one-off years where data was not reported were observed. If we assume a 95% reporting 

capacity across both steps (local hospital to MoH and MoH to WHO) our suggested figure of 
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26.6 million diagnosed dengue infections would translate to 24.0 

 million potentially reportable cases per year or, overall 

approximately one quarter of the total apparent dengue infections that occur each year. 

 

This figure of 24.0 million potentially reported cases is an absolute upper bound of what we 

might expect to be reported to the WHO globally. This is because the studies we have used 

all estimate the upper bound of reportable cases. The hospitalisation rates are heavily 

influenced by increased healthcare provision. Case-definition positive predictive values are 

calculated under controlled situations that do not accurately reflect the strains on the 

healthcare system that vary both through space (e.g. equipment deficits in rural areas) and 

time (e.g. resource constraints during epidemics). Furthermore, estimates of over-diagnoses 

often take a very broad, and hence less specific, clinical definition of dengue so as to 

maximise study participant number; this increases the number of falsely clinically-diagnosed 

dengue patients. Finally, the losses through HMIS and between HMIS and the WHO were 

calculated from countries that have already been shown to proactively use their reported data 

(in so far as they display it on their MoH website). In countries where there is no motivation 

to use this data at a national level, it is easy to see how further data losses could occur, 

meaning an adjustment factor of only 5% loss at this stage is likely to be extremely 

conservative. 

 

PAHO, with 76% of total reported dengue cases in 2010, provides the most accurate and 

consistently reported dengue data (Table S1). PAHO reported 1.7 million dengue cases in 

2010 
166

. For this region our cartographic burden-estimation approach predicts 13.3 million 

apparent dengue infections suggesting a clinical burden of  3.99 million cases, 3.68 million 

clinical dengue diagnoses (with over and under reporting and laboratory confirmation) and 
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3.32 million cases reported to the WHO. The potential for over-estimation of parameters 

discussed above, in particular the over-diagnosis of dengue due to other febrile illnesses, is 

likely to be a specific source of over-estimation in the Americas. Considering this, parameter 

overestimation of as little as 10% is enough to reduce our burden estimate to levels 

comparable with WHO regional office reports (1.77 million compared to 1.7 million). 

 

In summary, the aim of this section is not to quantitatively estimate the number of cases at 

each stage in the healthcare system, but rather to show that our cartographic burden estimates 

of apparent infections are plausible when compared to surveillance-based estimates of 

clinical dengue cases once the inevitable underreporting of the latter approach is considered. 

We have shown that the biggest under-reporting step between apparent infections and 

reported cases occurs during treatment-seeking. Further losses occur due to difficulties in 

diagnosis and through errors in reporting. A detailed understanding of the link between total 

apparent infections and total reported cases is an important consideration if the true burden of 

dengue is to be estimated at various levels.  
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